Linear Mixed Effects Models

What if we fit a different model for each individual?

We could find a unique β_{0i} and β_{1i} for each individual . . .

Problems with this...

1. Generally these models will be **overspecified**.

Problems with this. . .

1. Generally these models will be **overspecified**.

2. This procedure would ignore within-subject correlations.

Alternative idea...

Share parameters.

Use **individual-level** terms in addition to **population-level** terms which are shared across the population.

Parameter Sharing in Practice

Instead of β_{0i} and β_{1i} , we could break these down into $\beta_{0i} = \beta_0 + b_{0i}$ and $\beta_{1i} = \beta_1 + b_{1i}$.

Parameter Sharing in Practice

Instead of β_{0i} and β_{1i} , we could break these down into $\beta_{0i} = \beta_0 + b_{0i}$ and $\beta_{1i} = \beta_1 + b_{1i}$.

This way,

$$\begin{aligned} Y_{ij} &= \beta_{0i} + \beta_{1i}t_{ij} + \epsilon_{ij} \\ &= (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})t_{ij} + \epsilon_{ij} \\ &= \underbrace{(\beta_0 + \beta_1t_{ij})}_{\text{Population Level}} + \underbrace{(b_{0i} + b_{1i}t_{ij})}_{\text{Individual Level}} + \epsilon_{ij}. \end{aligned}$$

▶ Take Y_{ij} to be **one** individual's *continuous* outcome at time j.

- ▶ Take Y_{ij} to be **one** individual's *continuous* outcome at time j.
- ▶ We want to decompose this into three components:

- ▶ Take Y_{ii} to be **one** individual's *continuous* outcome at time j.
- ▶ We want to decompose this into three components:
 - ► The overall **population mean**: $X'_{ii}\beta$.

$$Y_{ij} = X'_{ij} \beta$$

- ▶ Take Y_{ii} to be **one** individual's *continuous* outcome at time j.
- ▶ We want to decompose this into three components:
 - ► The overall **population mean**: $X'_{ii}\beta$.
 - ► The **individual-level** mean: $Z'_{ij}b_i$.

$$Y_{ij} = X'_{ij} \beta + Z'_{ij} b_i$$

- ▶ Take Y_{ii} to be **one** individual's *continuous* outcome at time j.
- ▶ We want to decompose this into three components:
 - ► The overall **population mean**: $X'_{ii}\beta$.
 - ► The **individual-level** mean: $Z'_{ij}b_i$.
 - ▶ The measurement **variation** at time j: ϵ_{ij} .

$$Y_{ij} = X'_{ij} + Z'_{ij} b_i + \epsilon_{ij}.$$

Regression Parameters with a Distribution

Recall that in **linear regression**, we take $\epsilon_i \sim N(0, \sigma^2)$ as a means of capturing the variation *across* the population.

Regression Parameters with a Distribution

Recall that in **linear regression**, we take $\epsilon_i \sim N(0, \sigma^2)$ as a means of capturing the variation *across* the population.

Can we do the same thing **here**?

Specification of a Linear Mixed Effects Model

For a continuous variate Y_{ij} , we take

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

For a continuous variate Y_{ij} , we take

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

where $b_i \sim N(0, D)$

For a continuous variate Y_{ij} , we take

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

where
$$b_i \sim N(0, D)$$
, $\epsilon_i = (\epsilon_{i1}, \cdots, \epsilon_{ik_i})' \sim N(0, G_i)$,

For a continuous variate Y_{ii} , we take

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

where $b_i \sim N(0, D)$, $\epsilon_i = (\epsilon_{i1}, \cdots, \epsilon_{ik_i})' \sim N(0, G_i)$, and with

$$b_i \perp \epsilon_i$$
.

For a continuous variate Y_{ij} , we take

$$Y_{ij} = X'_{ij} \beta + Z'_{ij} b_i + \epsilon_{ij},$$
 where $b_i \sim N(0, D)$, $\epsilon_i = (\epsilon_{i1}, \cdots, \epsilon_{ik_i})' \sim N(0, G_i)$, and with $b_i \perp \epsilon_i$.

Typically, we will set $G_i = \sigma^2 I$ to:

- 1. maintain the interpretation as sampling error; and
- 2. ensure **identifiability**.

▶ If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.

- If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.
- ▶ If we consider the marginal distribution of Y_i we find:

- If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.
- ▶ If we consider the marginal distribution of Y_i we find:
 - $ightharpoonup E[Y_i] = X_i \beta \text{ since } E[b_i] = 0.$

- If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.
- \triangleright If we consider the marginal distribution of Y_i we find:
 - $ightharpoonup E[Y_i] = X_i \beta \text{ since } E[b_i] = 0.$
 - $ightharpoonup \operatorname{var}(Y_i) = Z_i D Z_i' + G_i$, since $\operatorname{var}(Z_i b_i) = Z_i \operatorname{var}(b_i) Z_i' = Z_i D Z_i'$.

- If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.
- ▶ If we consider the marginal distribution of Y_i we find:
 - $ightharpoonup E[Y_i] = X_i \beta \text{ since } E[b_i] = 0.$
 - ightharpoonup var $(Y_i) = Z_i DZ_i' + G_i$, since var $(Z_i b_i) = Z_i$ var $(b_i) Z_i' = Z_i DZ_i'$.
 - Combining these results we find that, under this assumed model,

$$Y_i \sim N(X_i\beta, Z_iDZ_i' + G_i).$$

- If we condition on the **random effects** $E[Y_i|b_i] = X_i\beta + Z_ib_i$ and $var(Y_i|b_i) = var(\epsilon_i|b_i) = G_i$.
- ▶ If we consider the marginal distribution of Y_i we find:
 - $ightharpoonup E[Y_i] = X_i \beta \text{ since } E[b_i] = 0.$
 - ightharpoonup var $(Y_i) = Z_i D Z_i' + G_i$, since var $(Z_i b_i) = Z_i$ var $(b_i) Z_i' = Z_i D Z_i'$.
 - Combining these results we find that, under this assumed model,

$$Y_i \sim N(X_i\beta, Z_iDZ_i' + G_i).$$

This is a specific form of a linear marginal model!

Specific Examples: Random Intercept and Random Slope Models

The Random Intercept Model

The most basic version of a mixed effects model takes $Z_{ij} = 1$, and as such, b_i is a scalar for each individual.

This is called the **random intercept model**.

The Random Intercept Model

We have that

$$Y_i = \beta_0 + b_{0i} + \widetilde{X}_i \beta + \epsilon_i,$$

with $b_{0i} \sim N(0, \sigma_b^2)$ and $\epsilon_i \sim N(0, G_i = \sigma^2 I)$.

The Random Intercept Model

We have that

$$Y_i = \beta_0 + b_{0i} + \widetilde{X}_i \beta + \epsilon_i,$$

with $b_{0i} \sim N(0, \sigma_b^2)$ and $\epsilon_i \sim N(0, G_i = \sigma^2 I)$.

This gives

$$cov(Y_{ij}, Y_{il}) = \frac{\sigma_b^2}{\sigma_L^2 + \sigma^2}.$$

As a result, a random intercept model imposes the compound symmetry assumption!

The Random Intercept and Slope Model

If instead of just a random intercept, we also include a random time slope we get

$$Y_{ij} = \beta_0 + b_{0i} + \beta_1 t_{ij} + b_{1i} t_{ij} + \widetilde{X}'_{ij} \beta + \epsilon_{ij}.$$

The Random Intercept and Slope Model

If instead of just a random intercept, we also include a random time slope we get

$$Y_{ij} = \beta_0 + b_{0i} + \beta_1 t_{ij} + b_{1i} t_{ij} + \widetilde{X}'_{ij} \beta + \epsilon_{ij}.$$

Here, D will be given by the variance of each b_{0i} and b_{1i} , as well as by the covariance between these terms.

The within-subject correlation will be time dependent in this model automatically!

Parameter Estimation and Hypothesis Testing

This is a Parametric Model

Recall that this model is parametric, we have assumed normality. As a result, we can estimate $\widehat{\beta}$ through maximum likelihood (or REML) directly!

This is a Parametric Model

Recall that this model is parametric, we have assumed normality. As a result, we can estimate $\widehat{\beta}$ through maximum likelihood (or REML) directly!

This will give the (familiar) asymptotic results where

$$\widehat{\beta} \quad \stackrel{.}{\sim} \quad N\left(\beta, \left[\sum_{i=1}^n X_i' V_i^{-1}(\theta) X_i\right]^{-1}\right),$$

with
$$V_i(\theta) = \text{var}(Y_i) = Z_i D Z_i' + G_i$$
.

Hypothesis Testing

▶ Because this is a likelihood based methodology, we can use LRTs.

Hypothesis Testing

- ▶ Because this is a likelihood based methodology, we can use **LRTs**.
- ▶ The parameters for the covariances, denoted θ , will have some **regularity** concerns.

Hypothesis Testing

- Because this is a likelihood based methodology, we can use LRTs.
- ▶ The parameters for the covariances, denoted θ , will have some **regularity concerns**.
- Can use the standard information criteria as well!

Estimation versus Prediction

We saw **estimation** of the parameters β , but the b_i are random! As a result, we must **predict** them.

The best[†] predictor for b_i will be $E[b_i|Y_i]$, a quantity that we call the **best linear unbiased prediction** (or BLUP).

► The BLUP will take the form

$$E[b_i|Y_i] = DZ_i'V_i^{-1}(Y_i - X_i\beta).$$

► The BLUP will take the form

$$E[b_i|Y_i] = DZ_i'V_i^{-1}(Y_i - X_i\beta).$$

▶ This can be estimated using \widehat{D} , \widehat{V} , and $\widehat{\beta}$.

► The BLUP will take the form

$$E[b_i|Y_i] = DZ_i'V_i^{-1}(Y_i - X_i\beta).$$

- ▶ This can be estimated using \widehat{D} , \widehat{V} , and $\widehat{\beta}$.
- Once estimated, we can estimate outcomes as

$$\widehat{Y}_i = X_i \widehat{\beta} + Z_i \widehat{b}_i = \dots = \widehat{G}_i \widehat{V}_i^{-1} X_i \beta + [I - \widehat{G}_i V_i^{-1}] Y_i.$$

► The BLUP will take the form

$$E[b_i|Y_i] = DZ_i'V_i^{-1}(Y_i - X_i\beta).$$

- ▶ This can be estimated using \widehat{D} , \widehat{V} , and $\widehat{\beta}$.
- Once estimated, we can estimate outcomes as

$$\widehat{Y}_i = X_i \widehat{\beta} + Z_i \widehat{b}_i = \dots = \widehat{G}_i \widehat{V}_i^{-1} X_i \beta + [I - \widehat{G}_i V_i^{-1}] Y_i.$$

This is a **weighted average** between the estimated population mean $(X_i\beta)$ and the individual observation Y_i .

► The BLUP will take the form

$$E[b_i|Y_i] = DZ_i'V_i^{-1}(Y_i - X_i\beta).$$

- ▶ This can be estimated using \widehat{D} , \widehat{V} , and $\widehat{\beta}$.
- Once estimated, we can estimate outcomes as

$$\widehat{Y}_i = X_i \widehat{\beta} + Z_i \widehat{b}_i = \dots = \widehat{G}_i \widehat{V}_i^{-1} X_i \beta + [I - \widehat{G}_i V_i^{-1}] Y_i.$$

- This is a **weighted average** between the estimated population mean $(X_i\beta)$ and the individual observation Y_i .
- When G_i is large (more within-subject variation than between) there is more weight to the population average, and vice-versa.

▶ Marginal models are only able to estimate **population-level** effects.

- ▶ Marginal models are only able to estimate **population-level** effects.
- ► Subject-level effects are often relevant, and can be estimated using mixed effects models.

- ▶ Marginal models are only able to estimate **population-level** effects.
- ► Subject-level effects are often relevant, and can be estimated using mixed effects models.
- Linear mixed effects models are comprised of both fixed effects and random effects (which are individual specific).

- Marginal models are only able to estimate population-level effects.
- ► Subject-level effects are often relevant, and can be estimated using mixed effects models.
- Linear mixed effects models are comprised of both fixed effects and random effects (which are individual specific).
- ► We make normality assumptions, allowing for **standard asymptotic theory** when these are valid.

- Marginal models are only able to estimate population-level effects.
- ➤ **Subject-level** effects are often relevant, and can be estimated using **mixed effects** models.
- ► Linear mixed effects models are comprised of both **fixed effects** and **random effects** (which are individual specific).
- ▶ We make normality assumptions, allowing for **standard asymptotic theory** when these are valid.
- ► Two basic, common models (random intercept and random intercept and slope) capture correlation structures that we have previously seen.

- Marginal models are only able to estimate population-level effects.
- ➤ **Subject-level** effects are often relevant, and can be estimated using **mixed effects** models.
- ► Linear mixed effects models are comprised of both **fixed effects** and **random effects** (which are individual specific).
- ▶ We make normality assumptions, allowing for **standard asymptotic theory** when these are valid.
- ► Two basic, common models (random intercept and random intercept and slope) capture correlation structures that we have previously seen.
- ▶ We can use the **BLUP** to estimate individual effects, as-is necessary.

Drawbacks to Marginal Effects Models

Mixed effect models can be used to estimate **both** population-level and subject-level responses. . . what are the drawbacks?

Drawbacks to Marginal Effects Models

Mixed effect models can be used to estimate **both** population-level and subject-level responses. . . what are the drawbacks?

▶ They make distributional assumptions (GEEs did not).

Drawbacks to Marginal Effects Models

Mixed effect models can be used to estimate **both** population-level and subject-level responses. . . what are the drawbacks?

- ▶ They make distributional assumptions (GEEs did not).
- ▶ They may imply overly complex structures at the marginal level.