
Linear Mixed Effects Models



What if we fit a different model for each individual?



We could find a unique β0i and β1i for each individual . . .
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Problems with this. . .

1. Generally these models will be overspecified.

2. This procedure would ignore within-subject correlations.
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Alternative idea. . .

Share parameters.

Use individual-level terms in addition to population-level terms
which are shared across the population.



Parameter Sharing in Practice

Instead of β0i and β1i , we could break these down into β0i = β0 + b0i and
β1i = β1 + b1i .

This way,

Yij = β0i + β1i tij + εij

= (β0 + b0i) + (β1 + b1i)tij + εij

= (β0 + β1tij)︸ ︷︷ ︸
Population Level

+ (b0i + b1i tij)︸ ︷︷ ︸
Individual Level

+εij .
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Random Effects Terms



Consider One Individual

I Take Yij to be one individual’s continuous outcome at time j .

I We want to decompose this into three components:

I The overall population mean: X ′
ijβ.

I The individual-level mean: Z ′
ijbi .

I The measurement variation at time j : εij .
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Regression Parameters with a Distribution

Recall that in linear regression, we take εi ∼ N(0, σ2) as a means
of capturing the variation across the population.

Can we do the same thing here?
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Specification of a Linear Mixed Effects Model



Mathematical Notation for Mixed Effects Models

For a continuous variate Yij , we take

Yij = X ′ijβ + Z ′ijbi + εij ,

where bi ∼ N(0,D), εi = (εi1, · · · , εiki )′ ∼ N(0,Gi), and with

bi ⊥ εi .

Typically, we will set Gi = σ2I to:
1. maintain the interpretation as sampling error; and
2. ensure identifiability.
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Mean, Variance, and Distribution

I If we condition on the random effects E [Yi |bi ] = Xiβ + Zibi and
var(Yi |bi) = var(εi |bi) = Gi .

I If we consider the marginal distribution of Yi we find:

I E [Yi ] = Xiβ since E [bi ] = 0.
I var(Yi) = ZiDZ ′

i + Gi , since var(Zibi) = Zi var(bi)Z ′
i = ZiDZ ′

i .
I Combining these results we find that, under this assumed model,

Yi ∼ N (Xiβ,ZiDZ ′
i + Gi) .

I This is a specific form of a linear marginal model!
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Specific Examples: Random Intercept and Random Slope
Models



The Random Intercept Model

The most basic version of a mixed effects model takes Zij = 1, and
as such, bi is a scalar for each individual.

This is called the random intercept model.



The Random Intercept Model

We have that
Yi = β0 + b0i + X̃iβ + εi ,

with b0i ∼ N(0, σ2
b) and εi ∼ N(0,Gi = σ2I).

This gives

cov(Yij ,Yil) = σ2
b

σ2
b + σ2 .

As a result, a random intercept model imposes the compound symmetry assumption!
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The Random Intercept and Slope Model

If instead of just a random intercept, we also include a random time slope we get

Yij = β0 + b0i + β1tij + b1i tij + X̃ ′ijβ + εij .

Here, D will be given by the variance of each b0i and b1i , as well as by the covariance
between these terms.

The within-subject correlation will be time dependent in this model automatically!
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Parameter Estimation and Hypothesis Testing



This is a Parametric Model

Recall that this model is parametric, we have assumed normality. As a result, we can
estimate β̂ through maximum likelihood (or REML) directly!

This will give the (familiar) asymptotic results where

β̂ ∼̇ N

β, [ n∑
i=1

X ′i Vi
−1(θ)Xi

]−1
 ,

with Vi(θ) = var(Yi) = ZiDZ ′i + Gi .
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Hypothesis Testing

I Because this is a likelihood based methodology, we can use LRTs.

I The parameters for the covariances, denoted θ, will have some regularity
concerns.

I Can use the standard information criteria as well!
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Response Prediction (BLUPs)



Estimation versus Prediction

We saw estimation of the parameters β, but the bi are random!
As a result, we must predict them.

The best† predictor for bi will be E [bi |Yi ], a quantity that we call
the best linear unbiased prediction (or BLUP).



The BLUP

I The BLUP will take the form

E [bi |Yi ] = DZ ′i Vi
−1(Yi − Xiβ).

I This can be estimated using D̂, V̂ , and β̂.
I Once estimated, we can estimate outcomes as

Ŷi = Xi β̂ + Zi b̂i = · · · = Ĝ i V̂
−1
i Xiβ + [I − Ĝ iV−1

i ]Yi .

I This is a weighted average between the estimated population mean (Xiβ) and the
individual observation Yi .

I When Gi is large (more within-subject variation than between) there is more weight
to the population average, and vice-versa.
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−1
i Xiβ + [I − Ĝ iV−1
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Ŷi = Xi β̂ + Zi b̂i = · · · = Ĝ i V̂
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Summary

I Marginal models are only able to estimate population-level effects.

I Subject-level effects are often relevant, and can be estimated using mixed effects
models.

I Linear mixed effects models are comprised of both fixed effects and random
effects (which are individual specific).

I We make normality assumptions, allowing for standard asymptotic theory when
these are valid.

I Two basic, common models (random intercept and random intercept and
slope) capture correlation structures that we have previously seen.

I We can use the BLUP to estimate individual effects, as-is necessary.
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Drawbacks to Marginal Effects Models

Mixed effect models can be used to estimate both population-level
and subject-level responses. . . what are the drawbacks?

I They make distributional assumptions (GEEs did not).
I They may imply overly complex structures at the marginal level.
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