Linear Mixed Effects Models



What if we fit a different model for each individual?



We could find a unique [y; and ;; for each individual ...
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Problems with this. ..

1. Generally these models will be overspecified.



Problems with this. ..

1. Generally these models will be overspecified.

2. This procedure would ignore within-subject correlations.



Alternative idea. ..

Share parameters.

Use individual-level terms in addition to population-level terms
which are shared across the population.



Parameter Sharing in Practice

Instead of (p; and [31;, we could break these down into fy; = 39 + bo; and
p1i = B1 + b;.



Parameter Sharing in Practice

Instead of (p; and [31;, we could break these down into fy; = 39 + bo; and
B1i = B1 + bii.

This way,
Yij = Doi + Prity + €5
(Bo + boi) + (B1 + bui)ti + €
= (ﬁo + /31 t','j) + (bOi + bl,'t','j) —i—e,-j.

Population Level Individual Level




Random Effects Terms



Consider One Individual

» Take Yj; to be one individual's continuous outcome at time ;.
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Consider One Individual

» Take Yj; to be one individual's continuous outcome at time ;.
> We want to decompose this into three components:

> The overall population mean: X 3.

» The individual-level mean: Z,-’J-b,-.

» The measurement variation at time j: ;.



Regression Parameters with a Distribution

Recall that in linear regression, we take ¢; ~ N(0,0?) as a means
of capturing the variation across the population.



Regression Parameters with a Distribution

Recall that in linear regression, we take ¢; ~ N(0,0?) as a means
of capturing the variation across the population.

Can we do the same thing here?



Specification of a Linear Mixed Effects Model



Mathematical Notation for Mixed Effects Models

For a continuous variate Yj;, we take

Yy = Xj3 + Zjbi + <,
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Mathematical Notation for Mixed Effects Models

For a continuous variate Yj;, we take

Y= X0+ Zjbi + ¢,

/

if

where b; ~ N(0,D), ¢; = (¢1,- -+ ,ex.) ~ N(0, G;), and with
b,’ 1 €.

Typically, we will set G; = o2/ to:

1. maintain the interpretation as sampling error; and
2. ensure identifiability.
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Mean, Variance, and Distribution

» If we condition on the random effects E[Y;|b;] = X3 + Z;b; and
var(Y;|b;) = var(¢;|b;) = G;.
» If we consider the marginal distribution of Y; we find:
> E[Y;] = X;5 since E[b;] = 0.
> var(Y;) = Z;DZ! + G;, since var(Z;b;) = Z;var(b;)Z] = Z;DZ].
» Combining these results we find that, under this assumed model,

Y, ~ N(X;3,Z:DZ + G)).

» This is a specific form of a linear marginal model!



Specific Examples: Random Intercept and Random Slope
Models



The Random Intercept Model

The most basic version of a mixed effects model takes Zj; = 1, and
as such, b; is a scalar for each individual.

This is called the random intercept model.
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The Random Intercept Model

We have that N
Yi = 0o+ boi + Xi + ¢,

with by, ~ N 0,0’2 and ¢; ~ N(0, G; = o2)).
b

lhis gives
Yii, Yi) = 7‘2’
COV( ijs ,'/) = % 5

As a result, a random intercept model imposes the compound symmetry assumption!



The Random Intercept and Slope Model

If instead of just a random intercept, we also include a random time slope we get

Y,'j = fo + bo; + ‘D)lt,'j + b1,'t,'j + )?,_’ld + €jj.



The Random Intercept and Slope Model

If instead of just a random intercept, we also include a random time slope we get

Y,'j = fo + boi + 1 tij + bl,'t,'j + )?,3)) + €jj.

Here, D will be given by the variance of each by; and by;, as well as by the covariance
between these terms.

The within-subject correlation will be time dependent in this model automatically!



Parameter Estimation and Hypothesis Testing



This is a Parametric Model

Recall that this model is parametric, we have assumed normality. As a result, we can
estimate /3 through maximum likelihood (or REML) directly!



This is a Parametric Model

Recall that this model is parametric, we have assumed normality. As a result, we can
estimate /3 through maximum likelihood (or REML) directly!

This will give the (familiar) asymptotic results where
n -1
ERRY (f [Z X! \/,-1(6')X;] ) ,
i=1

with V;(0) = var(Y;) = Z,DZ] + G;.
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concerns.



Hypothesis Testing

» Because this is a likelihood based methodology, we can use LRTs.
» The parameters for the covariances, denoted 6, will have some regularity

concerns.
» Can use the standard information criteria as well!



Response Prediction (BLUPs)



Estimation versus Prediction

We saw estimation of the parameters /7, but the b; are random!
As a result, we must predict them.

The best' predictor for b; will be E[b;|Y;], a quantity that we call
the best linear unbiased prediction (or BLUP).
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individual observation Y;.



The BLUP

» The BLUP will take the form
E[bi|Yi] = DZIV. (Y — Xi).

» This can be estimated using D, V, and .
» Once estimated, we can estimate outcomes as

o -~ ~ ~ ~—1_ -~
Yi =X+ Zibj=---= GiV,' X + [I - G/V,_l]\/l

> This is a weighted average between the estimated population mean (X;3) and the
individual observation Y;.

» When G; is large (more within-subject variation than between) there is more weight
to the population average, and vice-versa.
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Summary

» Marginal models are only able to estimate population-level effects.

» Subject-level effects are often relevant, and can be estimated using mixed effects
models.

» Linear mixed effects models are comprised of both fixed effects and random
effects (which are individual specific).

> We make normality assumptions, allowing for standard asymptotic theory when
these are valid.

» Two basic, common models (random intercept and random intercept and
slope) capture correlation structures that we have previously seen.

> We can use the BLUP to estimate individual effects, as-is necessary.
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Drawbacks to Marginal Effects Models

Mixed effect models can be used to estimate both population-level
and subject-level responses. .. what are the drawbacks?

» They make distributional assumptions (GEEs did not).
» They may imply overly complex structures at the marginal level.



